NATIONAL UNIVERSITY OF SINGAPORE
 Department of Mathematics

$\mathbb{M A} 1505$ Mathematics I
 Tutorial 10

1. Evaluate $\iint_{S} f(x, y, z) d S$ and $\iint_{S} \mathbf{F} \bullet d S$, where $f(x, y, z)=x+y+z$ and $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$ and S is the surface defined parametrically by

$$
\mathbf{r}(u, v)=(2 u+v) \mathbf{i}+(u-2 v) \mathbf{j}+(u+3 v) \mathbf{k}, \quad(0 \leq u \leq 1,0 \leq v \leq 2)
$$

The orientation of S is given by the normal vector $\mathbf{r}_{u} \times \mathbf{r}_{v}$.
Ans: $40 \sqrt{3} ; \quad-\frac{430}{3}$
2. Evaluate $\iint_{S} z d S$, where S is the portion of the paraboloid $z=4-x^{2}-y^{2}$ lying on and above the $x y$ plane.

Ans: $\frac{289}{60} \pi \sqrt{17}-\frac{41}{60} \pi$
3. Evaluate $\iint_{S} \mathbf{F} \bullet d S$, where $\mathbf{F}=y \mathbf{i}+x^{2} \mathbf{j}+z^{2} \mathbf{k}$ and S is the portion of the plane $3 x+2 y+z=6$ in the first octant.

The orientation of S is given by the upward normal vector.
Ans: 31
4. Use Stoke's Theorem to evaluate $\oint_{C}\left(\frac{1}{2} y^{2} d x+z d y+x d z\right)$, where C is the curve of intersection of the plane $x+z=0$ and the ellipsoid $x^{2}+2 y^{2}+z^{2}=1$, oriented counterclockwise as seen from above.

Ans: $-\frac{\pi}{2}$
5. Use Stoke's Theorem to evaluate $\iint_{S}(\operatorname{curl} F) \bullet d \mathbf{S}$, where $\mathbf{F}(x, y, z)=y \mathbf{i}-x \mathbf{j}+y z \mathbf{k}$ and S is part of the surface $z=2\left(x^{2}+y^{2}\right)$ for which $z \leq 1 / 2$.

The orientation of S is given by the outer normal vector.
Ans: $\frac{\pi}{2}$
6. Use the divergence theorem to evaluate $\iint_{S} \mathbf{F} \bullet d \mathbf{S}$, where $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+x y \mathbf{j}+x^{3} y^{3} \mathbf{k}$ and S is the surface of the rectangular region bounded by the three coordinate planes and the planes $x=1, y=2, z=-3$.

The orientation of S is given by the outer normal vector.
Ans: 9

