MA 1505 Mathematics I
Tutorial 7 Solutions
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2. (a) The region can be regarded as a Type A region

D: 0<y<z, 0<zx<1.
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(b) The region can be regarded as a type A region with bottom boundary y = z? and top

boundary y = /z.
Since the two curves intersect at x = 0 and x = 1, the left and right are bounded by x = 0
and x = 1 respectively. So
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3. The line joining (1,0) and (4,2) has equation
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The line joining (1,0) and (9, —3) has equation
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The region D is is the union of D; and Do, where
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8
Dy : y2§x§—§y+1, -3<y<0.

Hence the required answer is
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. The region in Cartesian coordinates is given by

D: 0<y<+v1—-22 0<z<1

This is a type A region with x-axis as the bottom boundary and upper half of the unit circle
as the upper boundary.
Since the range of x is from 0 to 1, the region D is the first quadrant of the unit disk.
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In polar coordinates, this is given by

D: 0<r<1, 0<6<m7/2
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5. (a) The type B region R is given by
Yy<x<2, 0<y<8.

It is bounded on the left by the cubic curve @y = x and on the right by the vertical line
r=2.
Below it is bounded by the z-axis, and on top the left and right boundaries intersect at y = 8.

Converting to type A region, the lower boundary is y = 0, the top boundary is the cubic

curve y = 23

On the left, these two boundaries intersect at = 0 and on the right, it is bounded by = = 2.
So the region is given by
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(b) The type B region R is given by
y/2<z<+vVIn3, 0<y<2VIn3.

It is bounded on the left by the straight line x = y/2 and on the right by the vertical line
x=+vIn3.
Below it is bounded by the z-axis, and on top the left and right boundaries intersect at

y = 2VIn3.
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Converting to type A region, the lower boundary is y = 0, the top boundary is the line
y = 2z.
On the left, these two boundaries intersect at x = 0 and on the right, it is bounded by

z = +In3.

So the region is given by



MA1505 Tutorial 7 Solutions

2 ViE VS 2 Vg Y B
/ / e dxdy = / / e’ dydr = / e’ [y]Ziéx dr = / 2xe” dx
0 y/2 0 0 0 0

[e“ﬂ " —em3 _1=2
0

w

6. The volume is given by the double integral

V= //D f(z,y)dA

where D is the region bounded by the parabola y = 4 — 22 and straight line y = 3z and
f(x,y) is the function whose graph is the plane z — z +4 = 0.

Writing the equation of the plane as z = x + 4, we get the function f(z,y) = = + 4.
A rough sketch of the region D is shown below:
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D can be regarded as type A region
D : 3x§y§4—x2, —4<zg<l.

(The two limits —4 and 1 of z are obtained by solving the two equation y = 3x and y = 4—z2.)

Hence

' 625

1 pd—a? 1
1
V= / / (x+4)dydx = / (z+4)(4—2—3z)dr = |16z — 422 — Zx?’ — -t ==
—4J3z —4 3 4 4 12

7. By symmetry, the desired volume V is 8 times the volume V; in the first octant. Now,
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Therefore, V = 1—367“3. 4



